

Course Information Sheet

CSCI 1730
Systems Programming

Brief Course Description

(50-words or less)

Programs and programming techniques used in systems programming.
Assembler, linker, loader, pipes, sockets, and system analysis methods used
in systems environment.

Extended Course Description
/ Comments

This course covers the basics of UNIX systems programming, including file
and directory structures, basic and advanced file i/o, process creation, and
interprocess communication. An initial unit on “C++ for Java rogrammers”
will familiarize students with the use of C/C++ in systems programming.

Pre-Requisites and/or Co-

Requisites

Prerequisite: CSCI 1301: Introduction to Computing and
Programming
Co-requisite: CSCI 1302: Software Development

Required, Elective or Selected
Elective

Required Course

Approved Textbooks
(if more than one listed, the
textbook used is up to the

instructor’s discretion)

Author(s): Deitel and Deitel Author(s): Adam Hoover Title:
C++: How to Program Title: System Programming
Publisher: Prentice Hall with C and UNIX
Edition: Eighth Publisher: Addison Wesley
ISBN-13: 9780132662369 Edition: First

 ISBN-13: 978-0136067122

Specific Learning Outcomes
(Performance Indicators)

1. Design and implement a C++ project of moderate size, consisting of a
main driver class and multiple class files and employing composition,
inheritance and polymorphism.
2. Design and implement programs that use both static objects and
dynamic memory management and demonstrate knowledge of state and
behavior by constructing memory maps and predicting program output.
3. Demonstrate knowledge of the differences between pass-by-value and
pass-by-reference by predicting program output.
4. Demonstrate knowledge of variable scope rules by predicting
output.
5. Design and implement programs that make appropriate use of
pointers, references, function pointers, operator overloading, and
exception handling.
6. Construct memory maps of the state of the stack, heap, and global and
static memory during the execution of a C++ program.
7. Use the “make” utility, a software engineering tool for managing and
maintaining computer programs.
8. Use “gdb” to debug programs with a variety of errors.
9. Use the UNIX command line interface to create, delete, move, copy
and copy files and directories.
10. Use the UNIX command line interface to spawn processes that
redirect input or output or communicate through a pipe.
11. Design and implement C programs that employ the UNIX file
access primitives (open, close, read, write, lseek, fcntl).
12. Demonstrate knowledge of UNIX kernel and process data

structures by sketching file descriptor table, file table, and inode table
structures and the updates that correspond with the execution of sample
code.
13. Design and implement C programs that employ UNIX process
system calls and signal handling (fork, exec, wait, join, etc.)
14. Design and implement C programs that implement a client and
server that communicate via the UNIX socket system call interface.

Relationship Between
Student Outcomes and

Learning Outcomes

 Student Outcomes

 a b c d e f g h i j k

Le
ar

n
in

g
O

u
tc

o
m

es

 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫

 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

7 ⚫

8 ⚫

9 ⚫

10 ⚫ ⚫

11 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

12 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

13 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

14 ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Major Topics Covered

(Approximate Course Hours)

3 credit hours = 37.5 contact
hours

4 credit hours = 50 contact hours

Note: Exams count as a major
topic covered

C++ development environment, style guidelines, Makefiles (3.5 h)
How C+ differs from Java (1 h)
UML class diagrams and modeling (1 h)
Unix command line (1.5 h)
Editors (vi and emacs) (1 h)
C++ Classes (3 h) & Control Structures (1.5 h)
Scope, storage class, parameter passing (1.5 h)
Pass-by-value, Pass-by-reference (1.5 h)
Debugging with gdb (1.0 h)
Function templates, arrays, vectors (1.5 h)
Pointers, array names, function pointers (3 h)
Pointer and array notation (2 h)
Constructors, destructors, member-wise assignment (2 h)
Composition and Inheritance (3 h) & Operator Overloading (2 h)
Inheritance and Polymorphism (4 h)
Unix system architecture (1 h) & Files and Directories (2.5 h)
Processes (fork, exec, etc.) (3 h)
Signals (2 h) & Concurrency (3 h) &Programming with Pthreads (2 h)
Sockets (1.5 h)

Course Master Dr. Michael Cotterell

