

Course Information Sheet

CSCI 4050
Software Engineering

Brief Course
Description

(50-words or less)

Full	 cycle	 of	 a	 software	 system	 development	 effort,	 including	 requirements	
definition,	 system	 analysis,	 design,	 implementation,	 and	 testing.	 Special	
emphasis	 is	placed	on	 system	analysis	 and	design.	The	design	phase	 includes	
development	 of	 a	 user	 interface.	 A	 large	 term	 project	 incorporates	 the	 full	
software	life	cycle.	

Extended Course
Description / Comments

In	 this	 course,	 the	 students	 learn	 the	 principles	 of	 Software	 Engineering.		
Although	 several	 of	 the	major	 software	 design	 techniques	 are	 discussed,	 the	
course	concentrates	on	Object-Oriented	Design	(OOD).		The	course	begins	with	a	
discussion	 of	 the	 software	 development	 process	 and	 what	 constitutes	 well-
engineered	 software.	 The	 next	 subject	 is	 the	 requirements	 elicitation	 and	
requirements	 specification.	 	 The	 students	 learn	 how	 to	 structure	 and	 define	
functional	 and	 non-functional	 requirements.	 	 The	 next	 part	 of	 the	 course	 is	
devoted	to	requirements	analysis,	where	several	UML	diagrams	are	introduced	
to	 represent	 a	 variety	 of	 object-oriented	 models.	 	 This	 phase	 is	 followed	 by	
system	design,	which	includes	software	architecture	specification	as	well	as	an	
introduction	 to	design	patterns.	 	 	The	 construction	phase	 covers	 a	number	of	
implementation	 techniques,	 including	 mapping	 models	 to	 code.	 Finally,	 the	
students	learn	a	variety	of	software	verification	and	testing	techniques.		A	large	
portion	of	the	course	is	devoted	to	implementation	techniques	suitable	for	the	
creation	of	reliable	and	maintainable	software.	The	course	involves	a	large	team-
based	 software	project,	which	 is	 developed	during	 the	 entire	 semester.	 	 	 The	
students	learn	the	principles	of	project	management	and	team	software	design	
and	development,	as	well.	

Pre-Requisites and/or
Co-Requisites

Prerequisite: CSCI	2720	(Data	Structures)	OR	CSCI	2725	(Data	
Structures	for	Data	Science)

Required, Elective or
Selected Elective

Required Course

Approved Textbook

Author(s):	Bernd	Bruegge	and	Allen	H.	Dutoit.	
Title:	Object-Oriented	Software	Engineering.	Using	UML,	Patterns,	and	
Java,	Prentice	Hall,	2010.	
Edition:	3-rd	edition	
ISBN-13:	978-0136061250	

Specific Learning

Outcomes
(Performance

Indicators)

This	course	presents	a	survey	of	topics	in	software	engineering	most	relevant	
to	students	studying	computer	science.		At	the	end	of	the	semester,	all	students	
will	be	able	to	do	the	following:	

1. Identify	and	differentiate	phases	of	a	typical	software	process	and	how	
it	relates	to	the	software	life	cycle	and	the	different	software	process	
models.	

2. Create	functional	requirement	specifications	in	the	form	of	use	cases	
and	user	stories	and	differentiate	between	functional	and	non-
functional	requirements.		

3. Develop	static	and	dynamic	UML	diagrams	to	model	both	the	structural	
and	behavioral	aspects	of	the	software	system	throughout	the	different	
phases	of	the	development	life	cycle.	

4. Create	a	software	architecture	specification,	including	subsystem	
decomposition	and	subsystem	interface	descriptions.	

5. Communicate	and	effectively	function	as	a	member	of	a	software	
development	team	to	develop	a	software	system	based	on	its	
specification	and	previously	created	models.	

6. As a team, deliver a coherent and professional presentation and
demonstration of a functioning software system and the results of its testing.

ABET Learning
Outcomes

A. Graduates of the program will have an ability to: Analyze a complex
computing problem and to apply principles of computing and other
relevant disciplines to identify solutions.

B. Design, implement, and evaluate a computing-based solution to meet
a given set of computing requirements in the context of the program’s
discipline.

C. Communicate effectively in a variety of professional contexts.
D. Recognize professional responsibilities and make informed judgments

in computing practice based on legal and ethical principles.
E. Function effectively as a member or leader of a team engaged in

activities appropriate to the program’s discipline.
F. Apply computer science theory and software development

fundamentals to produce computing-based solutions.

Relationship Between
Student Outcomes and

Learning Outcomes

 ABET Learning Outcomes

Specific
Learning
Outcomes

 a b c d e f
1	 l l

2	 l l l l

3	 l l l l l

4	 l l l l

5	 l l l

6	 l l l l

Major Topics Covered

1. Software	Engineering	and	Software	Process	(3-hours)	
2. Team	and	project	management	(2-hours)	
3. Requirements	elicitation	and	specification	(4-hours)	
4. Use	case	modeling	(3-hours)	
5. Requirements	analysis	(4-hours)	
6. UML	diagrams	(4-hours)	
7. Static	and	dynamic	modeling	(3-hours)	
8. System	design	and	architectural	styles	(4-hours)	
9. Design	patterns	(3-hour)	
10. Detailed	(object)	design	(4-hours)	
11. Object	Constraint	Language	(1-hours)	
12. Implementation	techniques	(5-hours)	

13. Source	code	management	(2-hours)	
14. Persistence	and	storage	systems	(2-hours)	
15. Verification	and	Testing	(3-hours)	
16. Software	demonstration	(3-hours)	

Course Master Dr.	Krzysztof	Kochut

Modified

7/15/2020 by Dr. Krzysztof	Kochut and Dr. Eman Saleh

Approved

No

