Brief Course Description
(50-words or less)

Extended Course Description / Comments

Pre-Requisites and/or Co-
 Requisites

Required, Elective or Selected Elective

Approved Textbooks
(if more than one listed, the textbook used is up to the instructor's discretion)

Specific Learning Outcomes (Performance Indicators)

Course Information Sheet CSCI 4500
 Programming Languages

In this course we will explore modern programming languages and the paradigm -- procedural or imperative, functional, and logic programming -- that each strives to accommodate. Projects involve at least three languages to get a feel for the language paradigms

We will cover both past and present languages, with an emphasis on modern programming languages. We will look at a wide spectrum of styles of programming that include imperative, scripting, functional, logic and object oriented languages and evaluate their strengths and limitations.

Specific topics include:

- Syntax and semantics.
- Names, binding and scope.
- Imperative, functional, logical based and object oriented paradigm.
- Types.
- Control flow.
- Programming: Functional, Scripting and Logical Programming.

CSCI 1302: Software Development (Pre-Requisite)
CSCI 2720: Data Structures (Co-Requisite)
Selected Elective Course

Author: Michael L. Scott
Title: Programming Languages Pragmatics
Edition: 3 or later.
ISBN-13: 978-0123745149 or later.

Author: Robert W. Sebesta
Title: Concept of Programming Languages
Edition: 9 or later
ISBN-13: 978-0131395312 or later

At the completion of this course students should be able to do the following:

1. Explain the differences between imperative, functional and logical paradigms.
2. Explain why it is important to understand these programming language paradigms.
3. Explain when (and why) one paradigm is more applicable than another paradigm.
4. Create a lexer (using a tool like flex or lex) for a simple language.
5. Create a simple parser (using a tool like bison) for simple language.
6. Create and design a program using a functional programming language.
7. Create and design a program using a logical programming language.
8. Create and design a program using a scripting language
9. Demonstrate comprehension of short programs written in functional, imperative and logic paradigms.
10. Explain and evaluate design and implementation features of programming languages.

Relationship Between Student Outcomes and Learning Outcomes

		Student Outcomes										
		a	b	c	d	e	f	g	h	i	j	k
	\square		\bullet							\bullet	\bullet	
	[\bullet	\bullet	
	[\bullet							\bullet	\bullet	
	[\bullet	-						\bullet		\bullet
	\square		\bullet	\bullet						\bullet		\bullet
	6		\bullet	\bullet						\bullet		\bullet
	7		\bullet	\bullet						\bullet		\bullet
	8		\bullet	\bullet						\bullet		\bullet
	9		\bullet							\bullet	\bullet	
	10		\bullet	\bullet						\bullet	\bullet	

Major Topics Covered (Approximate Course Hours)

Overview of Programming Languages (4 hours)
Programming Language Paradigms (4 hours)
Programming Languages Syntax and Semantics (4-hours)
Scanning in Practice (4-hours)
Parsing in Practice (4-hours)
Functional Languages (lazy evaluation, evaluation order, higher order functions, currying, closures, static \& dynamic scope, side- effects, introduction to LISP like languages, LIPS or Scheme and modern mainstream functional programming languages like Clojure, Groovy and Scala) (8 hours)
Polymorphism (4 hours)
Control Flow (4 hours)
Names, Binding, Scope (4 hours)
Scripting (4 hours)
Data types (4 hours)
Logical Languages (4 hours)

Course Master

